Vad är ett linjärt förhållande?
En linjär relation (eller linjär förening) är en statistisk term som används för att beskriva en rak linje relation mellan en variabel och en konstant. Linjära förhållanden kan uttryckas antingen i ett grafiskt format där variabeln och konstanten är anslutna via en rak linje eller i ett matematiskt format där den oberoende variabeln multipliceras med lutningskoefficienten, tillsatt av en konstant, som bestämmer den beroende variabeln.
Ett linjärt förhållande kan kontrasteras med ett polynomiskt eller icke-linjärt (krökt) förhållande.
Key Takeaways
- En linjär relation (eller linjär förening) är en statistisk term som används för att beskriva ett rätlinjeförhållande mellan en variabel och en konstant. Linjära förhållanden kan uttryckas antingen i ett grafiskt format eller som en matematisk ekvation av formen y = mx + b. Linjära förhållanden är ganska vanliga i det dagliga livet.
Den linjära ekvationen är:
Matematiskt är en linjär relation en som uppfyller ekvationen:
y = mx + bwhere: m = slopeb = y-axeln
I denna ekvation är "x" och "y" två variabler som är relaterade till parametrarna "m" och "b". Grafiskt plottar y = mx + b i xy-planet som en linje med lutningen "m" och y-avlyssning "b." Y-avlyssningen "b" är helt enkelt värdet på "y" när x = 0. Lutningen "m" beräknas utifrån två individuella punkter (x 1, y 1) och (x 2, y 2) som:
m = (x2 -X1) (y2 -y1)
Linjärt förhållande
Vad säger ett linjärt förhållande dig?
Det finns tre uppsättningar nödvändiga kriterier som en ekvation måste uppfylla för att kvalificera sig som en linjär: en ekvation som uttrycker ett linjärt förhållande kan inte bestå av mer än två variabler, alla variabler i en ekvation måste vara till den första effekten och ekvationen måste diagram som en rak linje.
En linjär funktion i matematik är en som uppfyller egenskaperna för additivitet och homogenitet. Linjära funktioner följer också superpositionprincipen, som säger att nettoutgången för två eller flera ingångar är lika med summan av utgångarna från de enskilda ingångarna. Ett vanligt använt linjärt samband är en korrelation, som beskriver hur en variabel linjärt ändras till förändringar i en annan variabel.
I ekonometrics är linjär regression en ofta använd metod för att generera linjära förhållanden för att förklara olika fenomen. Men inte alla relationer är linjära. Vissa data beskriver förhållanden som är böjda (t.ex. polynomförhållanden) medan andra data inte kan parametreras.
Linjära funktioner
Matematiskt liknar en linjär relation är begreppet linjär funktion. I en variabel kan en linjär funktion skrivas enligt följande:
f (x) = mx + bwhere: m = slopeb = y-axeln
Detta är identiskt med den givna formeln för en linjär relation förutom att symbolen f (x) används i stället för y. Denna substitution görs för att markera betydelsen av att x är mappad till f (x), medan användningen av y helt enkelt indikerar att x och y är två kvantiteter, relaterade av A och B.
I studien av linjär algebra studeras egenskaperna hos linjära funktioner och görs rigorösa. Med tanke på en skalär C och två vektorer A och B från RN anger den mest allmänna definitionen av en linjär funktion att: c × f (A + B) = c X f (A) + c × f (B)
Exempel på linjära relationer
Exempel 1
Linjära förhållanden är ganska vanliga i det dagliga livet. Låt oss ta till exempel begreppet hastighet. Formeln vi använder för att beräkna hastighet är som följer: hastigheten är avståndet som har rest över tiden. Om någon i en vit Chrysler Town och Country Minivan 2007 reser mellan Sacramento och Marysville i Kalifornien, en sträcka på 41, 3 mil på motorväg 99, och hela resan slutar ta 40 minuter, kommer hon att ha rest strax under 60 km / h.
Det finns fler än två variabler i denna ekvation, men det är fortfarande en linjär ekvation eftersom en av variablerna alltid kommer att vara en konstant (avstånd).
Exempel 2
En linjär relation kan också hittas i ekvationsavståndet = hastighet x tid. Eftersom avstånd är ett positivt tal (i de flesta fall) skulle detta linjära förhållande uttryckas på den övre högra kvadranten på en graf med en X- och Y-axel.
Om en cykel tillverkad för två åkte med en hastighet av 30 miles per timme i 20 timmar, kommer ryttaren att hamna 600 miles. Representerad grafiskt med avståndet på Y-axeln och tiden på X-axeln, skulle en linje som spårar avståndet under dessa 20 timmar röra sig rakt ut från konvergensen av X- och Y-axeln.
Exempel 3
För att konvertera Celsius till Fahrenheit, eller Fahrenheit till Celsius, skulle du använda ekvationerna nedan. Dessa ekvationer uttrycker ett linjärt förhållande på en graf:
° C = 95 (° F-32)
° F = 59 (° C + 32)
Exempel 4
Antag att den oberoende variabeln är storleken på ett hus (mätt med kvadratfot) som bestämmer marknadspriset för ett hem (den beroende variabeln) när det multipliceras med sluttningskoefficienten 207, 65 och sedan läggs till den konstanta termen 10 500 $. Om ett hems kvadratmeter är 1 250 är husets marknadsvärde (1 250 x 207, 65) + 10 500 $ = 270 062, 50 dollar. Grafiskt och matematiskt visas det enligt följande:
Bild av Julie Bang © Investopedia 2019
I detta exempel, när husets storlek ökar, ökar husets marknadsvärde på ett linjärt sätt.
Vissa linjära förhållanden mellan två objekt kan kallas en "proportionalitetskonstant". Detta förhållande verkar som
Y = k × Xwhere: k = konstantY, X = proportionella mängder
Vid analys av beteendedata finns det sällan ett perfekt linjärt samband mellan variabler. Men trendlinjer kan hittas i data som utgör en grov version av en linjär relation. Du kan till exempel titta på försäljningen av glass och antalet sjukhusbesök som de två variablerna som spelas i en graf och hitta ett linjärt samband mellan de två.
